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ABSTRACT
Artificial neural networks (ANNs) have greatly advanced the fields
of video and image processing. These machine learning algorithms
have been proven to excel at tasks such as object detection and
handwritten digit recognition. Although ANNs have achieved in-
credibly high levels of accuracy on these tasks when simulated in
traditional computing environments, there is an increasing demand
for performing these tasks in real time on embedded computer
systems with low power consumption.

Researchers believe that spiking neural networks (SNNs) are a
suitable alternative because of their energy efficiency and event-
driven architectures. However, more research is required on SNNs
to determine the best neural models, encoding methods, and train-
ing techniques for their use in applications such as image processing
applications.

Our group expands on works that have compared the classi-
fication performance of ANNs to SNNs. We simulate our SNNs
in Python and use different neural models, encoding methods,
and training techniques to study how these factors affect the SNN
model accuracy. With one epoch of training on the MNIST data set,
we observed that the Diehl and Cook model, with input encoded
through a Poisson distribution of spikes, achieves the highest accu-
racy amongst the others. This shows the effectiveness of adjusting
the membrane threshold dynamically. Also, it proves that designing
the network with only one neuron that fires at each layer aids the
learning process.

KEYWORDS
spiking neural networks, MNIST, image classification, neuromor-
phic hardware

1 INTRODUCTION
Artificial neural networks (ANNs) have greatly advanced the fields
of video and image processing. These machine learning algorithms
have been proven to excel at tasks such as object detection and hand-
written digit recognition. This is shown in Wan et al.’s (2013) ap-
proach that performs handwritten digit recognition on the MNIST
data set with 0.21% error [13], and Kolesnikov et al.’s (2019) ap-
proach that performs image classification on the CIFAR10 dataset
with 99.37% accuracy [6].

Although ANNs have achieved incredibly high levels of accuracy
on these tasks when simulated in traditional computing environ-
ments, there is an increasing demand for performing these tasks in
real time on embedded computer systems with low power consump-
tion. For example, an autonomous unmanned aerial vehicle running

on a battery power supply may employ an ANN to assist with col-
lision avoidance. For tasks such as this, researchers believe that
spiking neural networks (SNNs) are a suitable alternative because
of their energy efficiency and event-driven architectures [1].

SNNs are networks of neurons that communicate information
through short pulses of data called spikes. A spiking neuron will
only output a spike to other neurons once a specific threshold of
spikes have been received, thus making them more energy efficient
than ANNs. Spiking neuron models are also inherently capable
of processing temporal information, which leads researchers to
believe that they are more capable of processing spiking event data
from devices such as dynamic vision sensors [1]. However, more
research is required on SNNs to determine the best neural models,
encoding methods, and training techniques for their use in image
processing applications.

Our group expands on the research of Deng et al. (2020) in com-
paring ANNs to SNNs for image classification tasks [3]. Deng et al.
(2020) evaluate the performance of SNNs relative to ANNs by (1)
measuring their accuracy in classifying the MNIST and CIFAR10
benchmarks, (2) comparing each of the networks’ memory cost
for storing weights, and (3) comparing cost of performing compu-
tations with each network [3]. Our group reimplements the tests
performed using different neural models, encoding methods, and
training techniques to study how these factors affect the SNNmodel
accuracy.

These experiments are performed using the PyTorch and Bind-
sNET Python packages [5]. PyTorch is a framework that allows
researchers to quickly develop ANNmodels to test, while BindsNET
is a recently developed extension of PyTorch that provides a way
to efficiently create and train SNN models.

1.1 Optimizing Hardware for Neural Networks

Figure 1: Central Processing Unit (CPU) Computing Archi-
tecture
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A primary concern when performing machine learning tasks
with ANNs is the speed at which inference is performed. On stan-
dard hardware that implements a von Neumann style architecture,
as shown in Figure 1, neurons are evaluated in the central pro-
cessing unit, called the CPU, while the synapse weight informa-
tion and neuron outputs are stored in the random-access memory,
or RAM. The challenge with this approach is that the transfer of
data between the CPU and RAM limits the speed at which the net-
work can be evaluated. This is known as the "memory bottleneck"
since the latency of transmitting data between the CPU and RAM
constrains the evaluation speed of the network. Furthermore, the
inherent parallelism of the neural network is not able to be real-
ized since the CPU has a limited number of cores that are able to
concurrently update the values of the neurons.

Figure 2: Graphics Processing Unit (GPU) Computing Archi-
tecture

Graphics processing units, or GPUs, have been able to im-
prove the speed of neural networks because of their capability to
perform large-scale matrix multiplication operations, which con-
sume most of the execution time in ANNs. As shown in Figure 2,
these devices feature several rows of logic units to perform com-
putations in parallel. However, GPUs suffer from high power con-
sumption because of the number of cores they employ, and like the
simpler CPU and RAM model, they are susceptible to the memory
bottleneck when their results are stored in the RAM.

To address these issues, researchers have looked towards the
development of neuromorphic hardware to accelerate the speed
of both neural network inference and training. Neuromorphic hard-
ware attempts to more precisely model the architecture of a neural
network by (1) featuring computing units that correspond to the
neurons in the network, as shown in Figure 3, and (2) providing
in-memory computing capabilities. By following this approach, the
hardware is capable of achieving lower power consumption and
faster training and inference times.

One of the key features of neuromorphic hardware is that many
designs do not use hardware multiplier units, which are slow com-
ponents and require a significant amount of area and power. These
designs are instead created to emulate the execution of spiking
neural networks (SNNs), a more biologically accurate neural net-
work model.

Figure 3: Neuromorphic Computing Architecture

1.2 Spiking Neural Networks
Spiking neural networks are a variant of neural networks that more
closely mimic the behavior of the brain. These “third generation”
networks receive data in the form of spikes. Each spike corresponds
to a specific weight specified by the synapse it travels across. As
a neuron receives spikes, its membrane potential increments to-
wards a threshold value. When the membrane potential exceeds this
threshold value, the neuron emits a spike which gets transmitted
to all other neurons connected to it. After firing, the neuron waits
for a period of time known as the “refractory period” before its
membrane potential can start accumulating again. This operation
continues for a distinct span of time[8].

Table 1 shows an overview of the differences between ANNs
and SNNs. Traditional ANNs perform inference instantaneously,
compared to SNNs that need to operate over a specified duration
of time before an input’s classification can be determined. Second,
traditional ANNs use raw numerical values as inputs for the neu-
rons, compared to SNNs that use spikes that occur over a specified
duration of time as inputs to the network. Finally, the output value
for a traditional ANN neuron is determined by passing the sum
of the input values multiplied by their respective synapse weights
through an activation function such as ReLU or sigmoid. An SNN
neuron, on the other hand, first adds the weights of the synapses
that carried spikes at the current timestep to its membrane potential,
then compares the value of its membrane potential to a threshold
value to determine if it should emit a spike.

SNNs are believed to have more potential than traditional ANNs
in several aspects. The energy efficiency of an SNN can outperform
that of anANNdepending on the technique used to encode the input
data into spikes. The reason for this is because an input neuron
will not necessarily produce a spike at each timestep, reducing the
amount of power consumed.

SNNs also do not inherently feature any large-scale matrix mul-
tiplication. Each neuron is only required to add the weight values
of the synapses that had spikes at each timestep to its current mem-
brane potential, and to check if the potential exceeds its threshold
value. Thus, SNN neurons can be realized with only adders and
comparators, which combined have a lower area and power con-
sumption than the multipliers and adders required by a traditional
ANN hardware implementations[1]. SNNs may also be more ca-
pable of learning patterns in time series and real time problems
due to their temporal properties, and their biologically accurate
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Table 1: Differences Between ANNs and SNNs

Network Type Execution Time Neuron Inputs/Outputs Output Mechanism

ANN Instantaneous Raw Numerical Value Activation Function (e.g., ReLU, Sigmoid)
SNN Duration of Time Binary Spike Value Threshold Value

representation may allow them to better accelerate neuroscience
research.

SNNs have three primary components needed for simulation: an
encoding scheme, a neural model and a learning technique. The
following section will detail how these components work.

1.3 Encoding Schemes

Figure 4: Spiking Neural Network Encoding Schemes

Many schemes exist for encoding input data into spikes that can
be fed into an SNN. Rate coding is one of the most popular encod-
ing schemes which maps an input’s intensity to its corresponding
input neuron’s firing rate. The higher the intensity of the input,
the more frequently the input neuron will fire a spike. Rate coding
is often supplemented with Poisson and Bernoulli distributions to
add a stochastic element to the spike firing times.

Temporal coding takes a more sparse approach at encoding the
input data. Each input neuron only fires once, and higher intensity
inputs fire earlier than lower intensity inputs. Latency coding is
a type of temporal coding scheme where the firing time of an
input neuron is proportional to its intensity. Rank order coding is
a temporal coding scheme that orders the firing times discretely
from neuron with the highest intensity to the lowest[11].

Population coding is a yet another approach where each in-
put corresponds to several neurons, and the input is encoded by
adjusting the times at which each of the input neurons fire. The
usage of Gaussian receptive fields with each neuron corresponding
to one of the Gaussian distributions is a common implementation
of population coding[9].

Each encoding scheme has its trade-offs. A rate coding scheme is
very robust to noise that may be transmitted with the input spikes;

however, neurons firing at a high rate cause the circuit to consume
more power. Additionally, the SNN needs to be simulated for an
adequate amount of time to accurately measure the input neuron
rates. A temporal coding scheme uses less energy because spikes
are only transmitted once, but it is very susceptible to noise that
gets transmitted in place of spikes. Population coding is a more
balanced approach compared to rate and temporal coding, but it
requires more neurons to represent the input data.

1.4 Neural Models

Figure 5: The Integrate-and-Fire, Leaky Integrate-and-Fire
and Adaptive LIF Neural Models

Similar to changing the activation function for a neuron in a
standard ANN, the behavior of each neuron can be adjusted in
an SNN by using different neural models. The integrate-and-fire,
or IF, neuron is a simple model where the membrane potential
is accumulated normally until a threshold value is reached before
emitting a spike.

The leaky integrate-and-fire, LIF, model has also been de-
rived as a more biologically accurate model. In an LIF neuron, the
membrane potential decrements towards a resting value at each
timestep. The longer the neuron goes without receiving an input
spike, the closer the membrane potential will get to its resting
state[2].
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The adaptive LIF model is similar to the LIF model, except
when the neuron emits a spike, the neuron’s threshold value in-
creases to prevent it from quickly firing again. The threshold value
will continue to increase each time the neuron fires, and gradually
decays towards a resting value when the neuron is not firing[4].

Lastly, the spike response model 0, or SRM0, is a neuron
model that also features a leaking membrane voltage. In addition,
the spikes produced by this model are generated stochastically,
where the probability of the neuron spiking increases as a function
of the membrane potential[12].

1.5 Spike-Timing Dependent Plasticity

Figure 6: Spike-Timing Dependent Plasticity

One of the most commonly used learning techniques for SNNs
is spike-timing dependent plasticity, or STDP. This unsuper-
vised learning rule operates on the behavior: “neurons that fire
together, wire together”. As shown in Figure 6, if a pre-synaptic
neuron (i) fires just before a post-synaptic neuron (j), the weight
between those two neurons is increased. This behavior is called
long-term potentiation (LTP) and the intuition is that the connec-
tion between the neurons should be strengthened if the pre-synaptic
neuron causes the post-synaptic neuron to spike. Alternatively, if a
pre-synaptic neuron (i) fires just after a post-synaptic neuron (j),
the weight between those two neurons is decreased. This behavior
is called long-term depression (LTD) and the intuition is that the
connection should be weakened if the pre-synaptic neuron has no
relation to the post-synaptic neuron[10].

1.6 Implementation Challenges
Though they have extraordinary potential, as outlined by their
advantages, there are several challenges that are limiting the appli-
cation of SNNs in machine learning problems.

SNNs primarily suffer because training them is not intuitive.
Spike events are non-differentiable, which makes optimizing the
cost function of the network challenging. SNNs have not been able

to reach the same accuracy level on similar classification tasks
performed by ANNs because efficient ways to train SNNs are still
under development. Even the process of comparing the performance
of SNNs and ANNs needs to be studied more since SNNs and ANNs
perform differently depending on the format of the dataset provided.
The programming frameworks used to model SNNs are also still
in their infancy and need to be more comprehensive to support
efficient SNN simulation[7].

Lastly, there are several parameters of the encoding scheme,
neural model, and learning technique that can be adjusted when
modeling an SNN. More research needs to be conducted to identify
the trade-offs between each of these variations for machine learning
tasks. The research in this project aims to understand the trade-offs
of these variations for a simple image classification task which has
been shown in several previous works.

2 RELATEDWORK
2.1 Diehl and Cook (2015)

Figure 7: Diehl and Cook’s Spiking Neural Network Archi-
tecture

In this work, Peter U. Diehl and Matthew Cook, from the Uni-
versity of Zurich, proposed an unsupervised algorithm for training
a spiking neural network on the MNIST dataset. As depicted in
Figure 7, this network consisted of three layers: a 784 neuron
input layer, an excitatory layer of adaptive LIF neurons, and an
inhibitory layer of LIF neurons[4]. Each excitatory layer neuron
was connected to only one neuron in the inhibitory layer. On the
other hand, the output of the neurons in the inhibitory layer were
connected to all the neurons of the excitatory layers except for the
one it received input from. Other excitatory neurons were inhibited
once an excitatory neuron emitted a spike. An inhibitory neuron
inhibited the internal voltage of a neuron once it received a spike.
This was helpful since an active neuron could prevent the voltage
of other neurons from increasing. The layer of adaptive LIF neurons
further operated in a way that only one excitatory neuron fired
per input, which is also referred to as the winner-take-all (WTA)
property.

The group used four different versions of STDP when training
the network training, and used Poisson rate coding to encode the
input data. With their proposed version of STDP, the best accuracy
they achieved was around 95% in a 784x6400x6400 style network.

2.2 Deng et al. (2020)
In this work, Deng et al. (2020) compared the classification perfor-
mance of various ANN and SNNmodels using the MNIST, CIFAR10,
NMNIST, and DVS-CIFAR10 datasets. Each of the networks was
trained using a type of the supervised backpropagation algorithm,
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and the SNNs used LIF neuron models. The group observed that
one of the SNNs was able to achieve 99.22% accuracy when tested
against theMNIST dataset, and 74.23% accuracywhen tested against
the CIFAR10 dataset[3].

The authors also conducted an analysis on thememory usage and
computation resources required for each network. They found that
one of their SNN models was ideal for MNIST classification because
of its lower compute cost and reasonable accuracy. Additionally, the
authors noted that studying the performance of various encoding
schemes, aside from rate coding, is important to better understand
the capabilities of SNNs.

3 METHOD
Our project expands on the research presented by Deng et al. (2020).
We compare the classification accuracy of a two-layer ANN to
a two-layer SNN using the MNIST dataset. Both networks were
created in Python using the PyTorch framework as a foundation.

3.1 ANN Experiment
The ANN tested in this project was developed in PyTorch, a deep
learning framework widely used by researchers, because it provides
facilities to work with GPUs. The network implemented features
a two-layer 784x100 neuron architecture. The inputs of the first
layer are summed and passed through the ReLU activation function,
while the inputs of the second layer are passed through the softmax
function. The network is trained using stochastic gradient descent
with a learning rate of 0.01. Mini-batch training is used to reduce
the training time with a batch size of 64.

3.2 SNN Experiment

Figure 8: A simple two layer network created using Bind-
sNET

The SNNs simulated in this project were created in the BindsNET
framework which uses PyTorch as the backend library. An example
of how to construct a network in BindsNET is shown in Figure 8.
The SNNs in this project feature a 784x100 neuron architecture with
an inhibitory recurrent connection at the output layer, a similar
architecture to that proposed by Diehl and Cook (2015)[4].

Three encoding schemes were used to convert the input images
into spike trains. These images were constrained to have a maxi-
mum input intensity of 128 and were encoded over a period of 100
milliseconds. The encoding schemes used include:

Table 2: Spiking Neural Network Hyperparameters

Models Hyperparameter Value

All Threshold Voltage -52
All Post-Spike Reset Voltage -60
All Refractory Period 5

LIF, SRM0, D&C Membrane Potential Decay Constant 100
LIF, SRM0, D&C Resting Voltage -65

D&C Threshold Voltage Increase (Adaptive) 0.05
D&C Threshold Voltage Decay Constant 10−7

Table 3: SpikingNeuralNetworkLearningHyperparameters

Hyperparameter Value

LTP Learning Rate 10−2
LTD Learning Rate 10−4

Minimum Weight Value 0
Maximum Weight Value 1

• Poisson Rate Coding
• Bernoulli Rate Coding
• Rank Order (Temporal) Coding

Four variations of neuron models were analyzed against the
input data over the period of 100milliseconds. The hyperparameters
used for these neurons are noted in Table 2. These neuron models
include:

• Integrate-and-Fire Model (IF)
• Leaky Integrate-and-Fire Model (LIF)
• Spike Response Model 0 (SRM0)
• Diehl and Cook’s Adaptive LIF Model (D&C)

Three unsupervised learning rules were used to train the net-
work. The hyperparameters used for these learning rules are noted
in Table 3. The learning rules include:

• STDP
• Weighted STDP
• Hebbian Learning

Similar to the ANN, the SNN also used mini-batch training with
a batch size of 64, and was trained for only one epoch to reduce
training time. To determine the predicted output of the SNN, each
excitatory neuron was assigned a label based on the amount of
times it produced a spike for the presented input data. During
training, the labels were adjusted based on the spike frequency of
the excitatory neurons. Once training was completed, the labels
were fixed and evaluated against the test data.

4 RESULTS AND EVALUATION
4.1 Results
The ANN was first trained using the MNIST dataset and tested
to have a basis for comparison to the SNNs. The ANN was able
to achieve a classification accuracy of 88% using our approach.
Table 4, shows the results of training several SNNs using the neu-
ron model and learning rule variations with a Poisson rate coding
scheme applied to the input data. The best performing network was
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Table 4: Classification Accuracy for Poisson Encoded Input

Neuron Model Learning Rule Accuracy

IF PostPre (STDP) 0.10
IF WeightDependentPostPre 0.09
IF Hebbian 0.10
LIF PostPre (STDP) 0.10
LIF WeightDependentPostPre 0.13
LIF Hebbian 0.10

SRM0 PostPre (STDP) 0.10
SRM0 WeightDependentPostPre 0.10
SRM0 Hebbian 0.10

DiehlAndCook PostPre (STDP) 0.79
DiehlAndCook WeightDependentPostPre 0.79
DiehlAndCook Hebbian 0.80

the Diehl and Cook neuron model with an accuracy of 80% when
the Hebbian learning rule was used. Table 5 shows that when a
Bernoulli rate coding scheme is used, the Diehl and Cook model
with the PostPre (STDP) learning rule performs the best with an
accuracy of 37%. Lastly, Table 6 shows that when a rank order
(temporal) coding scheme is used, the Diehl and Cook model with
the PostPre learning rule performs the best with an accuracy of
14%.

4.2 Discussion
The results obtained from this project were not what we anticipated.
All of the SNNs that used a neural model without an adaptive
threshold value performed poorly compared to the Diehl and Cook
model. Since we used the same hyperparameters that Diehl and
Cook used to configure their network, we believe that one reason
for this poor performance is because the hyperparameters were
not optimized for the other neuron models tested. We believe that
if the parameters are adjusted based on the neuron model used,
then we would have observed better classification accuracy. This
is especially true for the rank order encoding networks since each
input neuron only emits one spike.

We believe another reason for the poor accuracy of the mod-
els is because of the duration of time we simulated the SNNs. In
this project, we used a simulation time of 100 milliseconds for all
networks; however, some groups report that running the SNN sim-
ulation for a longer duration of time allows it to more accurately
predict the output, specifically when a rate coding scheme is used.
Increasing the number of excitatory neurons used may also have a
positive influence on the accuracy, as shown in Diehl and Cook’s
research [4]. Finally, reducing the batch size can increase the accu-
racy by allowing each of the training samples to more substantially
influence the weight changes.

In conclusion, we found that SNNs have several advantages as
outlined in our introduction, however, learning how to effectively
tune their attributes so that they may accurately perform image
classification tasks is challenging and requires further research.

Table 5: ClassificationAccuracy for Bernoulli Encoded Input

Neuron Model Learning Rule Accuracy

IF PostPre (STDP) 0.10
IF WeightDependentPostPre 0.10
IF Hebbian 0.10
LIF PostPre (STDP) 0.10
LIF WeightDependentPostPre 0.10
LIF Hebbian 0.10

SRM0 PostPre (STDP) 0.10
SRM0 WeightDependentPostPre 0.09
SRM0 Hebbian 0.10

DiehlAndCook PostPre (STDP) 0.37
DiehlAndCook WeightDependentPostPre 0.34
DiehlAndCook Hebbian 0.35

Table 6: Classification Accuracy for Rank Order Encoded In-
put

Neuron Model Learning Rule Accuracy

IF PostPre (STDP) 0.10
IF WeightDependentPostPre 0.10
IF Hebbian 0.10
LIF PostPre (STDP) 0.10
LIF WeightDependentPostPre 0.10
LIF Hebbian 0.10

SRM0 PostPre (STDP) 0.10
SRM0 WeightDependentPostPre 0.10
SRM0 Hebbian 0.10

DiehlAndCook PostPre (STDP) 0.14
DiehlAndCook WeightDependentPostPre 0.11
DiehlAndCook Hebbian 0.13
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