
VT ECE5510 CLASS FINAL PROJECT, DECEMBER 2020 1

Benchmarking Spiking Neural Networks
with Multiprocessing

Isaac Bettendorf, Student, Virgina Tech, Osaze Shears, Student, Virginia Tech

I. INTRODUCTION

THE brain is a massively asynchronous and parallel com-
putational machine [1], [2], [3]. While modern computers

become increasingly faster at performing tasks that are easily
accomplished with sequential arithmetic and logic operations,
they still fall short in performing tasks such as image recogni-
tion and abstract thinking with the speed and power efficiency
of the human brain [2], [3].

A. Evolution of Modern Computer Architecture

Modern computer architecture evolved from the Von Neu-
mann architecture and their designs have carried with them a
bottleneck in the system bus which makes a multiprocessor
design very unscalable. One method to increase throughput
despite this shortcoming is to utilize specialized processing
hardware such as graphic processing units (GPU). A GPU
is composed of many specialized arithmetic processing units
(ALUs) used for matrix multiplication and can typically per-
form hundreds of such calculations simultaneously.

B. Artificial Neural Networks

Artificial neural networks (ANN) are a group of algorithms
designed to mimic the behavior of biological neural networks,
nodes (neuron models) and their connections (synapses) being
the ANN’s most basic elements. These ANNs are taught
to perform tasks by training. During training, inputs, whose
expected outputs are known, are fed into the ANN. These
inputs propagate through the system producing outputs which
may or may not be correct. This process is known as forward
propagation. The ANN then performs a process known as back
propagation in which parameters of this network are adjusted
to compensate for the difference between the actual output
and the desired output. Traditionally in an ANN, it is the
forward propagation which utilizes matrix multiplication, a
process that can be sped up by using a GPU. More specialized
neuromorphic hardware exists where each neuron model is
represented in hardware. Neuromorphic hardware is more
scalable for power and integrated circuit (IC) real estate
compared to the GPU, which suffers from the unscalability
of multiplier circuits [4][5]. Neuromorphic hardware often
simulates the behavior of spiking neural networks.

C. Spiking Neural Networks

Spiking neural networks (SNN) are a form of ANN that
more closely simulates the behavior of natural neural networks
[6]. They are inherently asynchronous because SNNs do not

have optimizers like traditional ANN. Optimization in ANNs
traditionally needs to be synchronous: one synapse’s optimiza-
tions will have an affect on another synapse’s optimization.
To contrast, SNN synapses simply wait to receive spikes from
nodes within a simulation time step. The state of one synapses
is not necessarily influenced by the state of other synapses
in a network. A synapse in an SNN is only focused on the
nodes whose connections are coming into it; however, there is
a synchronous aspect to SNNs in that its elements must wait
to continue operating until all elements have reached the end
of the time step [4].

SNNs are massively parallel because of the asynchronous
nature of the individual nodes. In each layer, a node can
potentially be simulated in its own thread. In this article’s
implementation of a multithreaded SNN, there are groups of
nodes (of the same layer) being simulated by a single thread;
however, studying the performance on this architecture may
provide insight for the development of future architectures.

D. Project Overview

This article is inspired by the work seen in [7]. Ma et al.
study the performance of a multithreaded stochastic gradi-
ent descent (SGD) training algorithm on a distributed, non-
uniform memory access (NUMA) architecture. In our project
we add multithreading to an SNN algorithm and benchmark
its performance against a multithreaded convolutional neural
network (CNN) when learning images in the MNIST dataset.

II. BACKGROUND

A. Spiking Neural Network Mechanics

Spiking neural networks (SNNs) are fundamentally dif-
ferent from ANNs because their operation occurs over a
period of time. At each time step, the neurons in an SNN
receive weighted spikes that either increment or decrement the
neuron’s membrane potential. Once the membrane potential
of a neuron exceeds a predetermined threshold value, the
neuron emits a spike. After emitting a spike, the neuron
resets its membrane potential to its initial value and stops the
membrane potential from changing for a period of time called
the ”refractory period”.

There are three components needed to simulate an SNN: (1)
an encoding scheme, (2) a neuron model, and (3) a learning
rule.

1) Encoding Schemes: Encoding schemes are necessary
to specify the way that numerical input data is converted
into spike trains. Typically each feature of the input data is
mapped to an input neuron which generates spikes based on



VT ECE5510 CLASS FINAL PROJECT, DECEMBER 2020 2

the feature’s intensity. Our project looks at two different styles
of encoding data: rate coding and temporal coding.

Rate coding works by adjusting the rate at which input
neurons fire based on the intensity of the input data. Input
neurons mapped to higher intensities fire more frequently,
while input neurons mapped to lower intensities fire less.
While rate coding is a noise-resistant way to represent data, it
causes the network to consume more power when implemented
in hardware.

Temporal coding works by adjusting the time at which
input neurons fire based on the intensity of the input data. Input
neurons mapped to higher intensities fire earlier compared to
inputs with lower intensities. Temporal coding is more power
efficient than rate coding because of its sparsity, however, it
is very susceptible to noise [8].

2) Neuron Models: Another component required for sim-
ulating SNNs is the neuron model. Similar to the activation
function in an ANN, the neuron model uses the inputs provided
at the synapses to determine the output value of the neuron.
The primary difference between the two is that a neuron
model in an SNN will not provide any output if its membrane
potential has not reached a certain threshold.

In our project, we conducted experiments using the leaky
integrate-and-fire (LIF) neuron model. In this model,
weighted spikes that arrive at the neuron increase the mem-
brane potential normally. The membrane potential also decays
towards a resting value at each timestep. This behavior pre-
vents neurons that are not frequently stimulated from firing
[9].

3) Spike-Timing Dependent Plasticity: Spike-timing
dependent plasticity (STDP) is a common unsupervised
learning rule used to train SNNs. In this learning technique,
the influence that a pre-synaptic neuron has on a post-synaptic
neuron is adjusted based on the time elapsed between their
emitted spikes. If a pre-synaptic neuron fires just before
a post-synaptic neuron, then the weight of the synapse
connecting those two neurons is incremented (i.e., the
pre-synaptic neuron firing had a strong correlation to the
post-synaptic neuron firing) [10]. STDP is an inherently
asynchronous algorithm since each synapse performs its
weight updates independently from the other synapses.

B. Convolutional Neural Network

Convolutional neural networks (CNN) are traditional ANNs
with added functionality given by specialized layers with the
most important of these special layers being the convolutional.
The convolutional layer’s function is to learn and form filters
that best assist in the classification process. CNNs that are
composed of 2 dimensional convolutional layers are ideal for
image processing.

C. Computer Architecture

This section presents the two main architectures used in this
work. The first is Virginia Tech’s RLogin which is a NUMA
based architecture consisting of 64 Intel Xeon(R) Gold 5218
(at 2.30GHz) CPUs. The second, Virginia Tech’s GPU cluster,

TABLE I
HARDWARE SPECIFICATIONS

Element Name CPU NUMA GPU + CPU NUMA
CPU/MP 64 1 GPU + 8 CPU

Cores 16 perCPU 2560CUDA (totalGPU) + 8perCPU

Blocks – 4 Per MP

Threads 32 perCPU 2560

RAM/global 383 GB 16 GB for GPU + 32 GB for CPU

was composed of one Nvidia Tesla T4 (rev a1) GPU and eight
Intel Xeon(R) E5-2630 v3 (at 2.40 GHz) CPUs.

Table I depicts the architectures’ further specifications.
Each of the NUMA nodes are connected by high-bandwidth
interconnects and DRAM access. Data transfer between the
nodes takes longer than locally accessed memory.

The GPU is composed of multiple streaming multiproces-
sors (MP). Each MP is driven by the CUDA programming
model. Thousands of threads can potentially run simulta-
neously on the GPU. But the work passed to the GPU is
specialized and done so in a manner similar to passing a
function from the CPU [11]. The passed information consists
of a logical thread identifier that allows the threads to work
on different sections of the data [11].

D. Related Work

1) Stochastic Gradient Descent on Hardware: In their
research, Ma et al. (2019) benchmarked two different styles of
multithreaded stochastic gradient descent (SGD) on both CPU
and GPU hardware [7]. Their synchronous SGD algorithm
allowed the threads to concurrently compute the gradient based
on the training samples, and required threads to synchronize
after this calculation so that the main thread could perform
the weight updates. Alternatively, their asynchronous SGD
allowed the threads to both concurrently compute the gradi-
ent based on their training samples and update the weights
accordingly.

The group found that when synchronous SGD was run
using a GPU it sped up the training time by approximately
7X for deep neural networks when compared to the CPU
implementation. Additionally, asynchronous SGD performed
on a multithreaded CPU outperformed the GPU version by
more than 10X.

2) BindsNET: BindsNET is an SNN simulation framework
developed in Python by Hazan et al. [12]. It provides users
with an efficient way to construct and simulate SNNs in a
way the is consistent with PyTorch’s tensor objects.

Since BindsNET is built on top of PyTorch, it also supports
running the SNNs tensor operations on an NVIDIA GPU using
CUDA. BindsNET also provides several neural models and
encoding schemes to construct a variety of different SNNs.

3) Fast Spiking Neural Network Architecture for Low-cost
FPGA Devices: The source [13] implements an SNN on a
Xilinx Spartan 3 FPGA. Modeling a real biological system
requires thousands of neurons. This sources proposes an SNN
architecture that is able to be implemented using relatively



VT ECE5510 CLASS FINAL PROJECT, DECEMBER 2020 3

little hardware resources but still represent biological net-
works. This was accomplished by a combination of both serial
and parallel structures that are used to optimize the neurons’
required computation time. The presented results illustrates
an architecture whose performance is comparable to similar
implementations but reduces resource consumption by 70%.

III. EXPERIMENTAL DESIGN

In order to capture any improvements provided by the
addition of multithreading to an SNN implementation, an SNN
architecture that classifies the MNIST dataset was chosen.
This architecture consists of four layers whose dimensions are
respectively 784x320x50x10 LIF neuron models.

For comparison, a CNN was utilized. Just as with the SNN,
the CNN’s architecture was chosen based on its ability to
classify the MNIST dataset. This architecture consisted of six
layers: two convolutional (size 10x20), a drop-out, and three
traditional ANN layers (320x50x10).

The architectures were contracted using PyTorch in Python
3.6. The SNN also utilizes the BindsNET framework for
simulation. The experiments measured throughput which is
defined as the number of forward and back propagations
performed per second.

A. Multithreaded Convolutional Neural Network Algorithm

Many different methods for multithreading the CNN were
experimented with before using the final architecture and
method. PyTorch methods such as DataParallel and
DistributedDataParallel on different NUMA archi-
tectures such as Google CoLab were experimented with before
settling on the Python method process and Virginia Tech’s
RLogin to take the final data points.

Algorithm 1 Multithreaded CNN Pseudocode
for ii in range(num processes) do

Process(target=train,args=(ii,args,model,dataset))
pr.start()
prArray.append(pr)

end for
for pr in prArray do

pr.join()
end for

B. Multithreaded Spiking Neural Network Algorithm

Before attempting to add parallelism to the SNN, we first
used cProfile to determine where the the algorithm was spend-
ing most of its execution time. Figure 1 shows the results of
running the 320x50x10 SNN in cProfile. The results indicate
that that 78% of the execution time is spent performing updates
at the network’s layers (40%), synapses (22%) and weights
(16%). For each of these tasks, the network spent the most
time performing matrix multiplication.

Given these results, we focused on modifying the algorithm
so that the layer, synapse and weight updates could be per-
formed in parallel using multiple threads. The initial approach

Fig. 1. Results from running cProfile on a single-threaded SNN implemen-
tation.

taken utilized Python’s Thread and Queue classes to provide
tasks for the worker threads to perform. The throughput
results collected in our project were taken using these classes.
Later in the project we transitions to using ThreadPool to
improve the execution of our multithreaded algorithm. This
implementation is shown in Algorithm 2.

Algorithm 2 Multithreaded SNN Pseudocode
for t = 0 to num timesteps do

for c = 0 to num connections do
ThreadPool.apply(connection[c].get inputs())

end for
for l = 0 to num layers do

ThreadPool.apply(layer[l].forward())
end for
for c = 0 to num connections do

ThreadPool.apply(connection[c].update weights())
end for

end for

C. Experimental Procedure

A Python virtual environment was created on both of
Virginia Tech’s CPU and GPU clusters and the CNN and SNN
were trained using the MNIST dataset. On the CPU cluster,
both the CNN and the SNN were executed with varying thread
counts from 1 to 40 in steps of 4. This was repeated for
each given batch size of 32, 64 and 128. This processes was
repeated for the SNN given the encoding schemes of rate
coding and temporal coding. Because of the limited number
of CPUs, the same process above was executed on the GPU
cluster, however, the thread count varied from 1 to 16 and the
step size was either 1 or 2.

IV. RESULTS

A. CNN Results

Figure 2 and Figure 3 illustrate the results collected from
the multithreaded CNN executed on both CPU and GPU
systems respectively. While the multithreading did provide
improvements, it fell short of utilizing the architecture’s full
potential. In Figure 2, it can be seen that for all three
executions, the peak throughput is reached at about 20 threads.
After, as thread count increases, the throughput began to
decrease. The greatest throughput measured is when the batch
size is 128 at 507 ops/s. For this batch size, the throughput
at one thread is 252 ops/s. This translates to a speedup of



VT ECE5510 CLASS FINAL PROJECT, DECEMBER 2020 4

Fig. 2. Results from running the CNN Variations on the CPU

Fig. 3. Results from running the CNN Variations on the GPU

about 2. Using Amdahl’s law, it is calculated that, at this
CNN’s implementations best, the percentage of instructions
being parallelized is about 52.5%.

The GPU executions (Figure 3) did not see any improve-
ments in throughput when compared to the CPU executions. It
should be understood that this is an unfair comparison as the
processors in the clusters were different, with the CPU NUMA
having the superior processors. When only the CPUs are
utilized on the GPU NUMA and compared with the throughput
when both CPU and GPU are utilized, slight performance
gains are observed.

In both Figure 2 and Figure 3, it can be seen that the CNN
execution with the batch size of 64 clearly outperforms the
execution with batch size of 32. A similar but less significant
performance increase can be seen between the batch size
128 execution and the batch size 64 execution. Each thread
processes a batch independently so this trend can be explained
by the additional overhead of having to processes twice as
many batches in the batch size 32 execution compared to the
batch size 64 execution.

Fig. 4. Results from running the SNN Variations on the CPU

Fig. 5. Results from running the SNN Variations on the GPU

B. SNN Results

Figure 4 and Figure 5 show the results from running the
multithreaded SNN algorithm on the CPU and GPU systems
respectively. As seen in each of the figures, adding threads
to perform layer, synapse and weight updates substantially
decreased the throughput of the system. On the CPU-based
system, the best multithreaded execution is approximately
50% slower than the single threaded execution. Similarly, on
the GPU-based system, the best multithreaded execution is
approximately 20% slower than the single threaded execution.

C. Multithreaded Analysis

We investigate the reason for this decrease in the SNN’s
throughput by individually timing the threads instantiated by
the ThreadPool object. Figure 6 shows the results of
measuring (1) the average time it takes for a thread to get
its job from the pool, (2) the average time it takes for a
thread to execute this task, and (3) the average amount of
time it takes for all tasks to complete. These measurements
were recorded for the layer update and weight update tasks.
It can be observed that the initialization of a thread takes up
nearly 50% of the execution time for both layer and weight
updates. We suspect that because Python is a higher level



VT ECE5510 CLASS FINAL PROJECT, DECEMBER 2020 5

Fig. 6. Results from benchmarking ThreadPool tasks (Layer Updates and
Weight Updates)

Fig. 7. Results from measuring ThreadPool task start and end times (Layer
Updates)

scripting language, the multithreading features of the language
have not been well optimized. Python further does not allow
users to specify the priority of threads. Using a lower level
programming language such as C or C++ may be able to
improve the performance here by reducing the time it takes
for threads to receive their tasks.

Additionally, threads initialized in the multithreaded algo-
rithm take a longer amount of time to perform their task
than the single threaded version. We believe that the policy
employed by the scheduler is partially the reason for this, since
worker threads may compete with other processes running
on the system. To further understand this issue, we analyzed
the start and end times of threads performing layer updates
as shown in Figure 7. The results of this experiment show
all of the threads begin processing their layer updates at
approximately the same time. However, the time at which a
given thread completes its update occurs later if the thread was
initialized at a later time (i.e., a higher thread index). At this
time we cannot conclude why this behavior was observed, but
we suspect that it is again scheduler related.

V. CONCLUSION AND FUTURE WORK

Our CNN experiments showed that although GPUs have
the capability to improve matrix multiplication speed during
forward propagation, certain parts of the backpropagation
algorithm could only occur on the CPU and thus bottlenecked
the execution. The reason for this is because machines on GPU
cluster featured only 8 lower end CPUs compared to those on
the dedicated 64 CPU cluster. Using higher batch sizes with
the CNN also resulted in greater throughput since threads were
capable of processing more data at each step.

The SNN experiments showed adding multithreading func-
tionality to the network created a large overhead which dou-
bled the execution time in most cases. This overhead was likely
caused by the the time it took to provide tasks to the threads
in the pool, in addition to the scheduling policy of the CPU.
Furthermore, using temporal coding, a more sparse encoding
scheme compared to rate coding, reduced the throughput of
the SNN by about 80%.

Future work on this topic could attempt to look at SNN
implementations on lower level programming languages such
as C and C++. Brian2GENN appears to be a promising
alternative since the framework was built with multiprocessing
in mind [14]. Lastly, emulating the SNN on custom hardware
(i.e., FPGA and ASIC) may yield better throughput.

REFERENCES

[1] S. Zeki, “A massively asynchronous, parallel brain,” Philosophical
Transactions of the Royal Society B: Biological Sciences, vol. 370, no.
1668, p. 20140174, 2015.

[2] J. Hawkins and S. Blakeslee, On intelligence. Macmillan, 2004.
[3] M. Shanahan, The technological singularity. MIT press, 2015.
[4] M. Bouvier, A. Valentian, T. Mesquida, F. Rummens, M. Reyboz,

E. Vianello, and E. Beigne, “Spiking neural networks hardware im-
plementations and challenges: A survey,” ACM Journal on Emerging
Technologies in Computing Systems, vol. 15, no. 2, apr 2019.

[5] G. Li, L. Deng, Y. Chua, P. Li, E. O. Neftci, and H. Li, “Spiking neural
network learning, benchmarking, programming and executing,” Frontiers
in Neuroscience, vol. 14, 2020.

[6] W. Maass, “Networks of Spiking Neurons: The Third Generation of
Neural Network Models,” Tech. Rep. 9, 1997.

[7] Y. Ma, F. Rusu, and M. Torres, “Stochastic gradient descent on modern
hardware: Multi-core cpu or gpu? synchronous or asynchronous?” in
2019 IEEE International Parallel and Distributed Processing Sympo-
sium (IPDPS). IEEE, 2019, pp. 1063–1072.

[8] S. Thorpe and J. Gautrais, “Rank order coding,” in Computational
neuroscience. Springer, 1998, pp. 113–118.

[9] A. N. Burkitt, “A review of the integrate-and-fire neuron model: I.
homogeneous synaptic input,” Biological cybernetics, vol. 95, no. 1,
pp. 1–19, 2006.

[10] J. Sjöström and W. Gerstner, “Spike-timing dependent plasticity,” Schol-
arpedia, vol. 5, no. 2, p. 1362, 2010, revision #184913.

[11] P. Gupta, “Cuda refresher: The cuda programming model,” 2020.
[Online]. Available: https://developer.nvidia.com/blog/cuda-refresher-
cuda-programming-model/

[12] H. Hazan, D. J. Saunders, H. Khan, D. Patel, D. T. Sanghavi,
H. T. Siegelmann, and R. Kozma, “BindsNET: A Machine Learning-
Oriented Spiking Neural Networks Library in Python,” Frontiers in
Neuroinformatics, vol. 12, p. 89, dec 2018. [Online]. Available:
https://www.frontiersin.org/article/10.3389/fninf.2018.00089/full

[13] T. Iakymchuk, A. Rosado, J. V. Frances, and M. Batallre, “Fast
spiking neural network architecture for low-cost fpga devices,” in 7th
International Workshop on Reconfigurable and Communication-Centric
Systems-on-Chip (ReCoSoC). IEEE, 2012, pp. 1–6.

[14] M. Stimberg, D. F. Goodman, and T. Nowotny, “Brian2genn: accel-
erating spiking neural network simulations with graphics hardware,”
Scientific Reports, vol. 10, no. 1, pp. 1–12, 2020.


